Luminescence and coloration of undoped and Ti-doped sapphire crystals grown by Czochralski technique

G. Alombert-Goget, H. Li, Y. Guyot, A. Brenier, K. Lebbou
Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France

Abstract
Undoped and Ti-doped sapphires crystals were grown under stationary stable regime. The effect of growth parameters on the formation of color center is evaluated by absorption and luminescence measurements. The grown crystals with pulling rate less than 5 mm/h presents less F$_{2}^+$ center, therefore demonstrates a better crystal quality.

Keywords:
Sapphire
Crystal
Titanium
Color center
Luminescence

1. Introduction

Sapphire crystals have tremendous physical properties, hardness, optical transmission, thermal and chemical resistance, lattice parameter, biocompatibility. It is used for numerous applications: wafer for micro-electronics or LED, windows, watch and cellular phone glasses, optical fibers and wave guides for surgery. It is nowadays the most strategic crystal for a ultra-fast laser technology [1,2]. In particular, Ti-sapphire has allowed the production of the shortest pulses ever produced from a laser oscillator and it is currently developed as amplifier for several petawatt level laser systems [3–5]. Pure sapphire is clear and colorless. Defects such bubbles can strongly affect the optical performances and crystal coloration [6–9]. Depending on the purity and the dopant type, sapphire has a variety of colors. The red color of ruby comes from Cr$^{3+}$ in corundum, which gives rise to electronic transitions that absorb visible light. The impurities can be the direct reason of color, or they can chemically interact together to cause color or to modify the contrast (saturation) of color. So, the sapphire color is considered as one of the important criteria which is a key factor in the beauty and jewelry. In contrary, the presences of color centers are to avoid in crystal for laser application. Unfortunately, it is difficult to grow sapphire crystal with the wanted color. The starting charges, dopants concentration, atmosphere and the growth technology are of great importance to obtain the wanted color with the best optical performances. We present the growth of undoped and Ti-doped sapphire by a Czochralski (Cz) technique. We describe the crystal growth process to obtain homogeneous and uniform crystals. The presence of color center in undoped sapphire is presented and discussed as a function of the grown parameters. During the growth of Ti-doped sapphire, Ti$^{3+}$ and Ti$^{4+}$ with intrinsic absorption around 532 nm and 253 nm corresponding to pink color in the visible region were observed. This pink color can be colorless if Ti$^{3+}$ is converted to Ti$^{4+}$ under specific annealing treatment.

2. Experimental

2.1. Sapphire crystal growth by Czochralski technique

The starting raw materials were alumina and high purity TiO$_2$ (rutile) powders. Alumina (Al$_2$O$_3$-α) is produced by RSA Le Rubis [10] company in good agreement with JSPDS file no. 46-1212 of at least 99.99% purity. Sometimes sapphire and Ti-sapphire crackle were also used as starting charge for crystal growth. Czochralski (Cz) crystal growth technique was used to grow the crystals [7]. A 60 mm-diameter iridium crucible was inductively heated and automatic controlled diameter based on the time derivative of the crystal weight is used for all the growth process. In addition, to control melt decomposition and material evaporating from the charge, the weight of the crucible including charge were followed during all the experimental procedure. To avoid oxidation or other damages of crucible and crystallization, high vacuum was carried out and appropriate pressure of argon (1 bar) is used during the whole growth process. Typical sapphire and Ti-sapphire crystals weighted 250–400 g and were...
approximately 28–35 mm in diameter and 90–110 mm-long (Fig. 1). The other growth parameters were shown in Table 1.

2.2. Characterizations

The absorption spectrum of the samples was measured by a Perkin-Elmer UV–vis-NIR spectrometer operating between 200 and 3200 nm, with a slit of 2 nm resolutions. The measurements were performed using an EQ-99 broadband Laser-Driven Light Source (LDLS) from Energetic coupled with a Jobin Yvon Gemini 180 monochromator as excitation source. The luminescence is collected with a UV fiber to a Jobin Yvon Triax 320 monochromator and detected by a Jobin Yvon 3000 V CCD camera. This setup allows obtaining excitation emission amplitude map of the sample luminescence.

3. Results

3.1. Absorption spectra on sapphires

The sapphire crystals grown by the Cz method were cut into wafers perpendicular to growth direction (a axis), and optically polished. The thickness of the samples is 2 mm, Fig. 2 shows the absorption spectra realized on the samples. In Fig. 2a, the absorption spectra are few modified with the increase of the rotation rate. Only with a rotation rate of 16 rpm, a slight increase of the absorption around 200 nm appears which may be attributed to F centers [11,12]. In Fig. 2b, the absorption spectrum of the sample 2 growing with high pulling rate presents two absorptions bands around 255 nm and 310 nm. These two absorption bands are attributed to F⁺ centers [11,12]. Fig. 3 shows the absorption spectra of Ti doped sapphire crystals. The spectra present two overlapping broad bands peaking around 490 and 525 nm, which correspond to two phonon side bands of the same Ti³⁺ optical transition from level ⁷T₂ to level ⁶E but split into two sublevels according to the Jahn–Teller effect [13].

3.2. Photoluminescence spectra on sapphire

In Fig. 4 the excitation–emission amplitude maps in the excitation range 190–300 nm of sample 1 and sample 2 are reported. In Fig. 4a it is possible to observe two different emissions of sample 1: one centered on 330 nm for excitation at 260 nm; and a second one centered on 430 nm for excitation at 220 nm. The emission at 330 nm is attributed to F⁺ centers [11,14]. The weak emission around 425 nm should be attributed to the F color centers. The maximum emission of F centers in sapphire is normally around 413 nm for excitation at 205 nm [11,14], unfortunately the excitation lamp of the experimental setup emit to low energy on this area to record correctly this luminescence.

In Fig. 4b, for an excitation at 230 nm a strong emission around 430 nm is observed on the sample 2. This emission is well known in Ti-doped sapphire [15–19]. The excitation wavelength corresponds to an absorption band of F⁺ centers and the emission corresponds to Ti⁴⁺ emission band. So, this emission is usually attributed to Ti⁴⁺ emission after energy transfer from F⁺ centers [16]. With the increasing of the growth rate, sample 2 presents a big amount of...
F$^+$ centers. This big amount of F$^+$ centers in sample 2 allow efficient energy transfer mechanism to Ti$^{4+}$ present in very small amount in the material. In sample 1 this energy transfer is possible to occur also, however, the small amounts of F$^+$ centers reduce drastically this emission.

In the excitation range 190–270 nm, the Ti-doped samples produced a blue emission centered at 430 nm (see Fig. 5a for sample 5). In case of Ti-doped sapphire, the excitation range of the luminescence was broader due to larger amount of Ti$^{4+}$ in the crystal (see Fig. 5b).

Out of the emission excitation range already presented (where luminescence is affected by color centers) the luminescence of the two undoped samples are similar. The Fig. 6 presents a luminescence emission around 700 nm due to the presence of Cr$^{3+}$ ions in sample 2.

In the excitation range 190–270 nm, the Ti-doped samples produced a blue emission centered at 430 nm (see Fig. 5a for sample 5). In case of Ti-doped sapphire, the excitation range of the luminescence was broader due to larger amount of Ti$^{4+}$ in the crystal (see Fig. 5b).

Out of the emission excitation range already presented (where luminescence is affected by color centers) the luminescence of the two undoped samples are similar. The Fig. 6 presents a luminescence emission around 700 nm due to the presence of Cr$^{3+}$ ions in sample 2.
the two samples. The luminescence spectra of the two undoped samples do not present Ti$^{3+}$ emission bands or emission band from other impurity. In Fig. 7a, the luminescence of Ti$^{3+}$ centered at 750 nm and of Cr$^{3+}$ centered at 594 nm appeared clearly in the excitation emission amplitude map obtained on sample 5. The excitation and emission spectra of the Ti$^{3+}$ are shown in Fig. 7b. The excitation spectra of Ti$^{3+}$ presented the same shape as the absorption spectra presented in Fig. 3.

4. Conclusion

We have demonstrated experimentally that the pulling rate in undoped sapphire crystals grown by a Czochralski method has an effect on color centers. The absorption spectrum of the sample grown at high pulling rate (5 mm/h) presents two absorptions bands attributed to F$^+$ centers. This sample produces also a strong emission around 430 nm under an excitation at 230 nm, attributed to the emission of Ti$^{4+}$ present as impurities, after energy transfer from F$^+$ centers. In crystals grown with the pulling rate ≤ 5 mm/h the color centers amount decrease drastically, and then they are not easily observed in absorption and luminescence measurements. The high rotation rates can induce also color centers, but only a slight increase of the absorption due to F center is observed at high rotation rate. This can be related to the impurities distribution because of segregation phenomenon strongly affected by growth parameters.