Gamma-ray induced color centers in Yb:YAG crystals grown by Czochralski method

Yongjun Dong, Jun Xu*, Guoqing Zhou, Guangjun Zhao, Liangbi Su, Xiaodong Xu, Hongjun Li, JiLiang Si

Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Qinghe Road, 390, P. O. Box 800-211, Shanghai 201800, China

Received 13 February 2006; received in revised form 25 September 2006; accepted 20 October 2006 by B.-F. Zhu
Available online 7 November 2006

Abstract

20 at.% Yb:YAG single crystals have been grown by the CZ method and gamma-ray irradiation induced color centers and valence change of Fe$^{3+}$ and Yb$^{3+}$ ions in Yb:YAG have been studied. One significant 255 nm absorption band was observed in as-grown crystals and was attributed to Fe$^{3+}$ ions. Two additional absorption (AA) bands located at 255 nm and 345 nm, respectively, were produced after gamma irradiation. The changes in the AA spectra after gamma irradiation and air annealing are mainly related to the charge exchange of the Fe$^{3+}$, Fe$^{2+}$, oxygen vacancies and F-type color centers. Analysis shows that the broad AA band is associated with Fe$^{2+}$ ions and F-type color centers. The transition Yb$^{3+}$ → Yb$^{2+}$ takes place as an effect of recharging of one of the Yb$^{3+}$ ions from a pair in the process of gamma irradiation.

© 2006 Elsevier Ltd. All rights reserved.

PACS: 42.70.hj; 61.72.Ji; 61.80.-x

Keywords: A. Laser materials; C. Defects; D. Radiation

1. Introduction

Owing to favorable properties, especially the high thermal conductivity and excellent physical and chemical properties of the host crystals, Yb$^{3+}$ doped crystals are attractive diode pumped solid-state laser (DPSSL) systems. Especially, recent advances in a high-performance InGaAs laser diode with a wavelength between 900 and 1100 have stimulated interest in developing LD pumped Yb$^{3+}$-doped lasers [2,1]. Due to a broad absorption band suited for diode-pumping, relatively larger laser transition cross section, the lowest heat generation of any diode-pumped solid-state laser medium, and high quality and highly doped crystals which can be easily grown, Yb:YAG crystals have become an important components in diode pumped high power laser systems [3]. Yb:YAG could also be used for solar neutrino detection [4]. It was demonstrated that the interaction of a neutrino with 176Yb can be described by the following formulas:

\[\nu_e + ^{176}\text{Yb} \rightarrow ^{176}\text{Lu}^+ + e^- \quad (Q = 301 \text{ keV}) \]

\[^{176}\text{Lu}^+ \rightarrow ^{176}\text{Lu} + \gamma \quad (E_\gamma = 72 \text{ keV}). \]

A prompt electron plus a delayed gamma-signal is the signature of a neutrino event. A delayed coincidence within 50 ns is required to have good discrimination power against background noise [5,6].

Solid-state lasers are sometimes used in the same environment (e.g. instruments in orbital space missions, space-based light detection and ranging systems) [7,8]. Scintillators are designed to work in the strong external fields of ionizing radiation (e.g. gamma-ray, neutron). Therefore, It is important to study the ionizing irradiation effects on Yb:YAG crystals. However, there seem to be few reports on gamma irradiation effects on Yb:YAG crystals. It is the purpose of the present investigation to explore impurity defects and gamma-ray induced color centers in Yb:YAG crystals grown by the CZ method.
2. Experiments

Yb:YAG crystals were grown by the Czochralski method [9]. The starting materials were Y$_2$O$_3$ (5 N), Al$_2$O$_3$ (5 N) and Yb$_2$O$_3$ (5 N), weighed according to a specific molar ratio. After the compounds were ground and thoroughly mixed, they were pressed into the form of blocks. These pieces were sintered at 1350 °C for 24 h in air and then loaded into an iridium crucible for crystal growth. The growth atmosphere was highly pure nitrogen gas. The pulling rate was 1 mm/h and the rotation rate was about 20 rpm.

Samples were cut from the as-grown Yb:YAG crystals perpendicularly to the growth axis and polished on both sides. We performed gamma-ray irradiation by means of a 60Co gamma source (average gamma energy 1.25 MeV) on the sample up to an absorbed dose of 2×10^6 Gy with the dose rate of about 250 Gy/min at room temperature. The absorption spectra were recorded by means of a V-570 UV/VIS/NIR spectrophotometer. The light sources were a deuterium lamp (190–350 nm) and a halogen lamp (340–1200 nm), and the spectral resolution was 1 nm. To make accurate comparison, gamma irradiation was performed on the same piece of sample. Values of induced additional absorption (AA) due to the irradiation or thermal processing were calculated from the formula:

$$\Delta k = \frac{1}{d} \ln \frac{T_1}{T_2}$$

where k is the absorption, d is the sample thickness and T_1 and T_2 are the transmissions of the sample obtained before and after gamma-irradiation or thermal treatment, respectively.

3. Results and discussion

Fig. 1 shows the absorption spectrum of as-grown 20 at.% Yb:YAG crystals at room temperature. The broad absorption band in the range of 190–250 nm, which is not observed in the spectra of the undoped sample, is assigned to the transitions from the 2F$_{7/2}$ ground state of Yb$^{3+}$ to the charge transfer state (CTS) [10]. The four strong absorption bands at 914, 940, 969 and 1028 nm are attributed to the 2F$_{7/2} \rightarrow ^2$F$_{5/2}$ Yb$^{3+}$ transitions. It can be seen that one prominent absorption band at 255 nm occurred in Yb:YAG grown by the CZ method. It has been shown from optical absorption and the electron paramagnetic resonance (EPR) technique that the absorption band at 255 nm in YAG was due to an Fe$^{3+}$ charge-transfer band, which was made up of contributions from substitutional Fe$^{3+}$ ions in octahedral and tetrahedral sites [11]. Work by Jiang et al. [12] also suggested the absorption peak at 255 nm in YAG crystals grown by CZ is associated with Fe$^{3+}$ ions. In order to further determine if Fe$^{3+}$ ions exist in our samples, we measured the electron paramagnetic resonance (EPR) of the as-grown Yb:YAG and compared the result with that of Fe$^{3+}$:YAG reported in previous work [11]. The ESR result was shown in the inset of Fig. 1. As we can see, the positions of ESR peaks are in good agreement with that of the intentionally Fe$^{3+}$ doped sample. Therefore, it is believed that the Fe$^{3+}$ ions are responsible for the absorption band at 255 nm in Yb:YAG crystals. However, our further experiments indicate that the 255 nm band was not observed in 5 and 10 at.% Yb:YAG. Therefore, the presence of the uncontrolled impurity Fe$^{3+}$ ions may strongly depend on growth conditions.

Fig. 2 curve (a) shows the additional absorption spectrum of 20 at.% Yb:YAG crystals after γ-irradiation at room temperature. One negative additional absorption band and one broad positive AA band, located at 255 nm and 345 nm, respectively, were produced. It has been shown that the 255 nm band is correlated to Fe$^{3+}$ impurity ions. The negative AA value indicates that the concentration of the Fe$^{3+}$ ions decreases after gamma irradiation. During the gamma-ray irradiation process, high-energy photons (1.25 MeV) produced a large number of free electrons in crystals (mainly involving the Compton Effect, Photoelectric Effect and Pair Production processes). These free electrons could be trapped by Fe$^{3+}$ ions and this leads to recombination of the Fe$^{3+}$ to Fe$^{2+}$ ions. This process could be expressed as: Fe$^{3+} + e \rightarrow Fe^{2+}$.

![Fig. 1. Absorption and EPR spectrum of the as-grown Yb:YAG crystals.](image1)

![Fig. 2. AA spectrum of 20 at.% Yb:YAG after gamma irradiation (a) and annealing in air at 800 °C for 12 h subsequent gamma-ray irradiation (b).](image2)
The broad absorption band centered at about 345 nm shown in Fig. 2 attracts more attention due to its complicated origin. Kaczmarek et al. observed a 313 nm band in gamma-ray irradiated Cr:1m:Ho:YAG crystals and attributed it to the Fe$^{2+}$ ions [13]. We also found that a Fe$^{2+}$ ion absorption band at 313 nm occurred in Yb:YAP crystals after gamma irradiation. In addition, the same band was also observed in Nd:YAP and pure YAP crystals [14]. As shown above, Fe$^{2+}$ ions were produced in Yb:YAG crystals as a result of the transition Fe$^{3+}$ to Fe$^{2+}$. Therefore, it could be thought that the Fe$^{2+}$ ion absorption contributes partly to the induced broad band.

Previous studies have shown that cation vacancies would be the most common defects intrinsic to the YAG lattice [15]. Because the Yb:YAG crystal was grown in an inert atmosphere, many oxygen vacancies were produced in crystal. By analogy with the charge-recharge process of Fe ions, these O$^{2-}$ vacancies in Yb:YAG crystal would capture one or two electron(s) to form F$^+$ or F centers. This process may be expressed as: $V_0 + e^- \rightarrow F^-$; $F^- + e^- \rightarrow F$. Our previous study [16] have suggested that the broad band in the region 280–340 nm in gamma irradiated Yb:YAG crystal grown in a reducing atmosphere is associated with F-type color centers. From the results given above, it is most probable that the broad AA band centered at 345 nm is correlated with Fe$^{2+}$ ions and F-type centers.

In order to prove above assumptions, we performed air annealing of the 20 at.% Yb:YAG at 800 °C for 12 h subsequent to 2 × 108 Gy gamma-ray irradiation. The AA spectrum was shown in Fig. 2 curve (b). It is interesting that the AA spectrum of gamma irradiated Yb:YAG shows anearly symmetrical shape before and after air annealing. One positive additional absorption band at 255 nm and one negative broad band centered about 345 nm were produced. Gamma irradiation and subsequent air annealing have opposite effects on the changes of induced absorption. The above results clearly indicate that the 255 nm band is attributed to Fe$^{3+}$ ions and the 345 nm band is related to Fe$^{2+}$ ions and F-type (an oxygen-ion vacancy occupied by one or two electron(s)) color centers. This can be explained as follows: In the air annealing process, the annealing temperature of around 800 °C is not enough to introduce real exchange of anions between the Yb:YAG crystal and the atmosphere. So it may be difficult for oxygen to come into the crystal. However, the electrons could be thermally released from the traps in this case. Fe$^{2+}$ could release one electron to become Fe$^{3+}$ ions. At the same time, F and F$^+$ color centers easily lose electrons and become oxygen vacancies and F$^+$ color centers. The whole process can be expressed as:

\[
F^+ \rightarrow V_0 + e^-; \quad F \rightarrow F^+ + e^-; \quad Fe^{2+} \rightarrow Fe^{3+} + e.\]

As a result, the concentration of the Fe$^{3+}$ ion increases and the positive AA band at 255 nm occurred. In addition, the decrease in Fe$^{2+}$ ions and F-type color centers gives a good explanation of the negative broad AA band centered at about 345 nm. Therefore, opposite effects were observed after air annealing.

Fig. 3 shows the AA spectrum of the Yb$^{3+}$ ions in 20 at.% Yb:YAG crystal after γ-irradiation with doses of 2 × 108 Gy. It can be seen that negative AA peaks characterizing the Yb$^{3+}$ ions absorption in the IR range occurred, indicating that Yb$^{2+}$ ions were produced and Yb$^{3+}$ ions decrease after gamma irradiation. During the irradiation processes, free electrons induced by gamma-ray irradiation could be captured by the Yb$^{3+}$ ions and as a result the transition Yb$^{3+}$ → Yb$^{2+}$ takes place. It has been shown by Henke et al. that the absorption bands of Yb$^{2+}$ in YAG are located at 280, 400 and 660 nm [17]. However, it is very strange that the absorption peaks characteristic of the Yb$^{2+}$ ions do not appear in the absorption spectrum of Yb:YAG. Kaczmarek et al. [18, 19] have investigated the gamma irradiation effects on Yb-doped CaF$_2$, LiLuF$_4$, LiYF$_4$, BaY$_2$F$_9$ and KY$_3$F$_{10}$ and they concluded that Yb$^{2+}$ centers formed as an effect of recharging of one of the Yb$^{3+}$ ions from a pair for all the materials excluding KY$_3$F$_{10}$, while for KY$_3$F$_{10}$Yb$^{3+}$ the centers are related to isolated Yb$^{3+}$ ions. Therefore, it is very likely that the Yb$^{3+}$ ion pairs exist in YAG and the transition Yb$^{3+}$ → Yb$^{2+}$ takes place as an effect of recharging one of the Yb$^{3+}$ ions from a pair in the case of gamma irradiation. In addition, Kaczmarek et al. observed that the isolated Yb$^{3+}$ ion absorption bands occurred in 7% Yb:YAG but was absent in 10, 15, 20, 25 and 30% Yb:YAG. This indicates that the Yb concentration is closely related to the formation of isolated Yb$^{2+}$ ions. One is likely to form cluster structures involving at least two Yb ions in highly Yb-doped YAG crystals.

4. Conclusions

Gamma irradiation of Yb-doped YAG single crystals produced one negative AA band located at 255 nm and one broad positive AA band located at 345 nm, respectively. The 255 nm absorption band was also observed in as-grown crystals and was attributed to Fe$^{3+}$ impurity ions. The concentrations of Fe$^{2+}$ ions and F-type color centers increase after gamma irradiation as a result of the transitions: Fe$^{3+} + e^- \rightarrow Fe^{2+}$; $V_0 + e^- \rightarrow F^-; F^- + e^- \rightarrow F$. During the air annealing process, the transitions $F^- \rightarrow V_0 + e^-; F^- \rightarrow F^- + e^- and Fe^{2+} \rightarrow Fe^{3+} + e$ take place. The changes in the AA spectra after gamma irradiation and air annealing are mainly related to the charge exchange of the Fe$^{3+}$, Fe$^{2+}$, oxygen vacancies and F-type color
centers. Oxygen annealing and gamma-ray irradiation leads to an opposite effect on the AA of the Yb:YAG crystal. Analysis shows that the broad AA band may be associated with Fe$^{2+}$ ions and F-type color centers. The absorption peaks characteristic of the Yb$^{3+}$ ions do not appear in the absorption spectrum of Yb:YAG crystals and it is very likely that the transition Yb$^{3+} \rightarrow$ Yb$^{2+}$ takes place as an effect of recharging of one of the Yb$^{3+}$ ions from a pair in the process of gamma irradiation.

References