Elastic and elastooptic properties of LiB$_3$O$_5$

I.I. Zubrinov a, V.K. Sapozhnikov a, N.A. Pylneva b, V.V. Atuchin a,*

a Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, Novosibirsk 630090, Russia
b Laboratory of Crystal Growth, Institute of Mineralogy and Petrography, Novosibirsk 630090, Russia

Received 8 December 2003; received in revised form 16 December 2003; accepted 22 December 2003
Available online 6 May 2004

Abstract

LiB$_3$O$_5$ (LBO) crystals are of great importance for nonlinear optical applications. In this study a set of elastic coefficients has been determined for LBO by the interference acoustooptical method and a set of elastooptic coefficients has been measured by Dixon’s method.

Keywords: LiB$_3$O$_5$ (LBO) crystal; Elastic coefficients; Elastooptic coefficients

1. Introduction

Lithium triborate (LiB$_3$O$_5$ or LBO) is one from the basic crystal materials used for laser beam control in visible and near IR ranges [1–3]. LBO crystals, Pn$2_1$$_a$ point group [4] and $a = 8.441$, $b = 7.379$ and $c = 5.138$ Å, are characterized by such valuable properties as appropriate nonlinear optical properties in combination with high optical damage threshold [2,5] , electrooptic and piezoelectric effects [6,7], and relative surface chemical stability [8,9]. Recently a method of LBO crystal growth with using molybdate flux has been proposed [10]. The optimization of the growth conditions yields large size, ∼500 g, LBO crystals with very low defect content [11,12]. As a practical matter, it is desirable to have as more complete set of physical and chemical characteristics of low defect LBO as possible. In the present study the elastic and elastooptic properties of LBO grown by top seeded solution growth (TSSG) method from molybdate flux have been evaluated.

2. Experiment

The crystal studied was grown by TSSG method without pulling and rotating. Detailed description of charge preparation and growth conditions has been presented in [13]. Parallel sample with the dimensions 10 mm × 8 mm × 6 mm was cut and polished perpendicular to the three principal crystallographic axes.

lelepiped sample with the dimensions 10 mm × 8 mm × 6 mm was cut and polished perpendicular to the three principal crystallographic axes.

In accordance with C$_{3v}$ symmetry nine independent nonzero elastic constants and 12 independent nonzero elastooptic constants characterize LBO. Elastic constants were calculated with using experimental data on phase velocities of bulk elastic waves in LBO sample. Ultrasonic wave velocities have been measured with original pulse interference acoustooptical method with very high-resolution [14]. The structure of acousto-optical cell is shown in Fig. 1. In this configuration elastic waves are excited by piezoelectric transducer positioned on buffer. The polarization of elastic wave is defined by the transducer used. When a single high frequency electric pulse with duration τ is fed on the transducer, a set of ultrasound pulses of the same duration and frequency is excited in the system transducer-buffer-sample due to consecutive reflections at the interfaces. So, in buffer the following pulses will be observed: U_1-directly from transducer, U_2-reflected from the interface buffer-sample, U_3-doubly passed through the sample (passed into sample, then reflected from external face of the sample and returned to buffer), and so on. The high frequency filling of all three pulses in buffer is of the same frequency, wavelength and polarization. The pulse U_3 keeps the information on velocity of ultrasonic wave in the sample and U_2 pulse is a reference. With τ increasing, the pulses overlap and the interference is observed. In this case, high frequency variation will induce the variation of the magnitude (beating) of sum pulse in the range from minimum $A_2 - A_3$ to maximum $A_2 + A_3$.

* Corresponding author. Tel.: +7-3832-343889; fax: +7-3832-332771. E-mail address: atuchin@thermo.isp.nsc.ru (V.V. Atuchin).

© 2004 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

where $A_{12} = A_1 + A_2$. Here A_i is a magnitude of ultrasonic pulse U_i, respectively, the beating of intensities appeared for the laser beams I_2, I_3 diffracted on the ultrasonic pulses. Let us suppose that at any frequency f_1 the maximum of intensity of diffracted laser beam is observed under the condition

$$2\pi f_1 \left(2L/V\right) + a_1 + a_2 = 2\pi n,$$

(1)

where a_1 and a_2 are phase shifts by reflections, L - sample thickness in the direction of ultrasonic wave and V - ultrasonic wave velocity. Then, at frequency f_2 some maximum will be detected with the number $m = n + N$ under the phase resonance condition

$$2\pi f_2 \left(2L/V\right) + a_1 + a_2 = 2\pi m,$$

(2)

So, on frequency variation $\Delta f = f_2 - f_1$ we will see $N = m - n$ maximums defined by the condition

$$N = \Delta f \left(2L/V\right).$$

(3)

Now, if to measure the value Δf and maximum number N, the ultrasonic wave velocity is defined by simple Eq. $V = 2L/\Delta fN$.

Elastooptic constants were determined by Dixon’s method [15]. The structure of the acoustooptic cell used is shown in Fig. 2. In this cell LBO sample and reference sample (silica) are linked in tandem by special bonding layer. Piezoelectric transducer is positioned on external face of reference sample. In this configuration ultrasonic pulse generated by transducer travels through the reference sample and LBO sample, is reflected by free face of LBO sample and returns to reference sample. The ultrasonic wave is probed by laser beam under Bragg’s angle. The intensity of diffracted beam is defined by the relation

$$I_1 = I_0 \sin^2 \left(\frac{V}{2}\right),$$

(4)

where I_0 is an intensity of light transmitted through the sample and V is governed by the equation

$$V = \frac{\pi L (2M_2 I_0)}{\lambda \cos \theta}.$$

(5)

where L is a length of acoustooptic interaction, λ the light wavelength in vacuum, θ an angle between light beam in crystal and wavefront of ultrasonic wave, I_0 the ultrasonic wave intensity and

$$M_2 = \frac{n^2 \rho^2}{\rho V^3},$$

(6)

where M_2 is a coefficient of acoustooptical figure of merit, n the refractive index of the crystal, ρ the density, V the an ultrasonic wave velocity and p the elastooptic constant. If the sequence of transmittance of ultrasonic waves is designated by indices i, as it is illustrated in Fig. 2, and I_i is an intensity of the optical beam diffracted by ultrasonic pulse with number i, then M_2 for the sample may be resulted as

$$M_2 = \frac{M_1^2}{M_2^2} = \left(\frac{I_{10}}{I_{11}}\right)^{1/2},$$

(7)

where M_1^2 the coefficient of acoustooptical figure of merit of silica reference sample.

The density of our LBO crystal, $\rho = 2.4789$ g/cm3, necessary for calculations, was measured by hydrostatic method.

3. Results and discussion

The values of ultrasonic wave velocities measured in LBO are presented in Table 1. It is reasonable to be noted that all velocities were determined for the same LBO sample and possible error is not above 5 m/s. If to compare the absolute values of velocities of ultrasonic waves in LBO with those for some recently studied materials, the highest value detected in LBO exceed that in KTiOPO$_4$ (7680 m/s) [16], and is substantially below those found for another borate,
CuB₂O₄ (99 m/c) [17] , and BeAl₆O₁₀ (12,000 m/c) [18] .

Table 3

<table>
<thead>
<tr>
<th>Propagation direction</th>
<th>Type</th>
<th>Polarization</th>
<th>Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1 0 0]</td>
<td>L</td>
<td>[1 0 0]</td>
<td>6338</td>
</tr>
<tr>
<td>S</td>
<td>[0 1 0]</td>
<td>4050</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>[0 0 1]</td>
<td>5846</td>
<td></td>
</tr>
<tr>
<td>[0 1 0]</td>
<td>L</td>
<td>[0 1 0]</td>
<td>6042</td>
</tr>
<tr>
<td>S</td>
<td>[0 0 1]</td>
<td>5319</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>[0 0 0]</td>
<td>4024</td>
<td></td>
</tr>
<tr>
<td>[0 0 1]</td>
<td>L</td>
<td>[0 0 1]</td>
<td>6940</td>
</tr>
<tr>
<td>S</td>
<td>[0 1 0]</td>
<td>5324</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>[0 0 0]</td>
<td>5737</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Table 2 Elastic constants of LBO (10¹¹ N/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cij</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>This work</td>
</tr>
</tbody>
</table>

References