Structural nature of 7Li and 11B sites in the nonlinear optical material LiB$_3$O$_5$ using static NMR and MAS NMR

Ae Ran Lim a,*, Choon Sup Yoon b

a Department of Science Education, Jeonju University, Jeonju 560-759, Republic of Korea
b Department of Physics, KAIST, Daeduck Science Town, Taejeon 305-701, Republic of Korea

HIGHLIGHTS

• The structural nature of the nonlinear optical properties of LiB$_3$O$_5$.
• Single-crystal NMR and MAS NMR.
• The 3-coordinated trigonal and 4-coordinated tetragonal.
• The spin-lattice relaxation time in rotating frame T_{1r}.

ARTICLE INFO

Article history:
Received 30 July 2013
Received in revised form 16 March 2014
Accepted 2 June 2014
Available online 21 June 2014

Keywords:
Optical material
Crystal structure
Optical properties
Nuclear magnetic resonance

ABSTRACT

The structural nature of the nonlinear optical properties of LiB$_3$O$_5$ is analyzed using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. The 3-coordinated trigonal [B(1) and B(2)] and 4-coordinated tetragonal [B(3)] sites are distinguished using the spectrum and the spin-lattice relaxation time in rotating frame T_{1r}, which was obtained from the 11B MAS NMR. Moreover, the T_1 and T_{1r} values for 7Li and 11B are compared, and the activation energies were obtained. The T_{1r} values of the boron nuclei in LiB$_3$O$_5$ show no significant changes. These results may be closely related to the largest second-order nonlinear optical coefficient.

Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Borate crystals such as LiB$_3$O$_5$, LiCsB$_6$O$_{10}$, Li$_2$B$_4$O$_7$, BiB$_3$O$_6$, and BaB$_2$O$_4$ have received a great deal of attention with regard to the generation of ultraviolet (UV) light using wavelength conversion because of their excellent nonlinear optical (NLO) properties in the UV region [1–3]. Among these crystals, lithium triborate LiB$_3$O$_5$ possesses good nonlinear-optical, acousto-optical, and physical properties that promise a wide variety of practical applications [4–6]. Many research papers have also discussed, in particular, the bond parameter methods, anharmonic oscillator models, and the bond charge model [7–10]. Chen’s group [2] recognized that borate compounds have numerous structural types since boron atoms may have either 3- or 4-coordination. They also suggested that the large second-order susceptibility in such molecules is mainly attributed to the π-conjugated orbital system of an acenitric planar organic molecule with charge transfer between the donor and acceptor substituent groups [11,12]. Owing to this complex structural nature of borate compounds, the selection of structural types that enhance the NLO effect is not straightforward.

There are relatively small numbers of papers on nuclear magnetic resonance (NMR) studies of LiB$_3$O$_5$. Matsuo et al. [13] studied the 7Li nuclear relaxation time and line intensities against temperature using both crystal and glass phases of LiB$_3$O$_5$. According to their result, the dominant contribution to the relaxation rate at low temperature was from the spin-phonon interaction, and the relaxation above 580 K was caused by the diffusion of Li ions. In addition, the quadrupole parameters of 7Li and 11B in LiB$_3$O$_5$ crystals were evaluated by NMR experiments in previous reports [14,15]. For 7Li nuclei, the quadrupole coupling constant $e^2Q/\hbar = 143 \pm 1$ kHz and asymmetry parameter $\eta = 0.6 \pm 0.1$ [14].
Further, three types of quadrupole parameters were also discussed for the 11B in LiB$_3$O$_5$ crystals \[15\]: the e^2Q/Qh and η are as follows: B(1): $e^2Q/Qh = 2.615 \pm 0.005$ MHz, $\eta = 0.266 \pm 0.005$, B(2): $e^2Q/Qh = 2.690 \pm 0.004$ MHz, $\eta = 0.204 \pm 0.003$, B(3): $e^2Q/Qh = 0.176 \pm 0.003$ MHz, $\eta = 0.584 \pm 0.003$.

In this study, the mechanisms underlying the NLO properties of LiB$_3$O$_5$ are discussed from the static NMR and magic angle spinning (MAS) NMR. We investigate the structural nature of lithium in LiB$_3$O$_5$ by performing 7Li single-crystal NMR and MAS NMR. Moreover, we use the same method to study the structural nature of 3-coordinated BO$_3$ and 4-coordinated BO$_4$. Here, the 11B MAS NMR spectrum and the spin-lattice relaxation times in the rotating frame $T1r$ for the 3-coordinated BO$_3$ and 4-coordinated BO$_4$ are distinguished. To obtain detailed information about the environments of lithium and the three borons, it is necessary to measure the spin-lattice relaxation times of the 7Li and 11B nuclei in the laboratory frame ($T1$) and in the rotating frame ($T1p$), respectively. Our results can be used in framing guidelines for the investigation and development of NLO materials.

2. Crystal structure

LiB$_3$O$_5$ single crystals are orthorhombic with four formula units per unit cell. The space group and point group are Ia and $C2/c$, respectively, and the lattice constants are $a = 8.447$ Å, $b = 7.3789$ Å, and $c = 5.1408$ Å \[16\]. Fig. 1 shows a projection of the LiB$_3$O$_5$ structure onto the ab-plane. The main structural unit of LiB$_3$O$_5$ consists of two crystallographically distinct boron–oxygen triangles and one boron–oxygen tetrahedron: the boron atoms are located within coordination polyhedra of two types, the 3-coordinate triangles [B(1) and B(2)] and the 4-coordinate tetrahedron [B(3)]. The B(1) and B(2) atoms lie within planar triangles formed by the oxygen, and the B(3) atoms within the oxygen tetrahedra. The average nearest neighbor distance of B(1)–O is 1.3692 Å, of B(2)–O is 1.3773 Å, and of B(3)–O is 1.473 Å. There are four Li atoms in a cell, and they are surrounded by four oxygen atoms in a considerably distorted tetrahedron \[17,18\]. The Li–O distance is rather longer than the B–O distance and ranges from 1.9887 to 2.1722 Å with a distorted tetrahedral coordination \[18\].

3. Experimental method

The LiB$_3$O$_5$ single crystals used in the present work were synthesized by the top-seeded slow-cooling method \[12\] at CASIX in China. The NMR signals of the 7Li and 11B nuclei in LiB$_3$O$_5$ single crystals were measured using a Bruker DSX 400 FT NMR spectrometer at the Korea Basic Science Institute. The static magnetic field was 9.4 T, the central radio frequencies, $\omega_0/2\pi$, for the 7Li nuclei were set to 155.51 MHz, and those for the 11B nuclei were set to 128.34 MHz. The spin-lattice relaxation times in the laboratory frame $T1r$ were measured using $(\pi/2)_\text{sat} - \tau - \pi/2$ pulse sequences. The nuclear magnetizations $M(t)$ of the 7Li and 11B nuclei at time t after the $(\pi/2)_\text{sat}$ pulses were determined from each saturation recovery sequence following the pulse. The width of the $\pi/2$ pulse for 7Li and 11B was 1.65 and 0.5 μs, respectively.

In addition, MAS NMR experiments were performed using a Bruker DSX 400 FT NMR spectrometer to obtain the spin-lattice relaxation time in the rotating frame $T1p$. The 7Li and 11B MAS NMR measurements were performed at Larmor frequencies of 155.51 and 128.34 MHz, respectively. The samples were placed in a 4-mm cross-polarization (CP)/MAS probe as powders. The MAS rate for 7Li and 11B was set as 5 and 13 kHz, respectively, in order to minimize the spinning sideband overlap. The width of the $\pi/2$ pulse for 7Li and 11B was 3.33 and 2.5 μs, respectively, corresponding to spin-locking field strengths of 75.07 and 100 kHz. The 7Li and 11B spin-lattice relaxation times in the rotating frame $T1p$ were measured by applying the spin-locking pulses. The temperature-dependent NMR measurements were carried out over the temperature range of 180–420 K. The samples were maintained at constant temperatures by controlling the nitrogen gas flow and heater current.

4. Experimental results and discussion

We describe recovery laws for quadrupole relaxation process in 7Li($I = 3/2$) and 11B($I = 3/2$) nuclear spin systems. The temperature dependence of the spin-lattice relaxation time in the laboratory frame $T1$ is indicative of a system in which the relaxation is dominated by fluctuations in the electric field gradient (EFG) tensor, driven by a thermally activated motion. For $I = 3/2$, the relaxation transition probabilities can be described by the equations \[19,20\]:

$$W_1 = \frac{1}{12} \left[\frac{eQ}{\kappa} \right]^2 \int_{-\infty}^{\infty} \left\{ V(1)(0)V_{-1}(t) \right\} \exp(i\omega t) dt$$

$$W_2 = \frac{1}{12} \left[\frac{eQ}{\kappa} \right]^2 \int_{-\infty}^{\infty} \left\{ V(2)(0)V_{-2}(t) \right\} \exp(i\omega t) dt,$$

where W_1 and W_2 denote the transition probabilities corresponding to the $\Delta m = \pm 1$ and $\Delta m = \pm 2$ transitions, respectively.

When the central line is at saturation, its recovery functions for the 7Li and 11B transitions are given by the equation:

$$M(t) - M(\infty) = 0.5 \left[\exp(-2W_1t) + \exp(-2W_2t) \right]$$

where $M(t)$ is the nuclear magnetization corresponding to the central transition at time t after saturation. The spin–lattice relaxation rate is then given by the equation:

$$1/T1 = 0.4(W_1 + 4W_2)$$

The spin-lattice relaxation times in the rotating frame $T1p$ for 7Li and 11B in LiB$_3$O$_5$ were measured at several temperatures. The $T1p$ values could be obtained by Fourier-transforming the FID following the end of spin locking and by repeating the experiments for various periods of time t. All the magnetization traces obtained for 7Li and 11B were fitted with the following single exponential function \[21,22\]:

![Fig. 1. Crystal structure of LiB$_3$O$_5$ projected on the ab-plane.](image-url)
4.1. Spin-lattice relaxation time of 11B in LiB$_3$O$_5$ single crystals using single-crystal NMR

11B is a quadrupolar nucleus with a nuclear spin of 3/2. When this nucleus is located in a non-zero EFG, it gives 21 resonance lines for the case in which the nuclear quadrupole interaction perturbs the Zeeman energy levels. One of them is the central transition line and the other two are satellite lines. If the local symmetry around the boron atoms is not cubic, a boron atom gives three resonance lines. Thus, the 4 boron atoms per unit cell in LiB$_3$O$_5$ give a total of 24 satellite lines. These 24 satellite lines of the 11B nucleus degenerate into 12 in each plane as shown in Fig. 2(a). Here, the central resonance lines of 11B overlap, and only one resonance line is visible. On the other hand, the rotation patterns of the 11B NMR spectra were reported previously [15] in three mutually perpendicular planes, and instead of one set (two satellites) of resonance lines for 11B, there is one central transition line and two satellite resonance lines were reported previously [15] in three mutually perpendicular planes, and instead of one set (two satellites) of resonance lines for 11B, there is one central transition line and two satellite resonance lines.

The spin-lattice relaxation time in the rotating frame T_{1p} is given by $T_{1p} = 1/W$.

Although the quadrupole parameters of the three types of 11B are distinguished from the data for the rotation patterns of the 11B NMR spectra in mutually perpendicular planes, the spin-lattice relaxation times in the laboratory frame T_1 for the central resonance line B(1), B(2), and B(3) cannot be distinguished. The 11B T_1 were measured at a Larmor frequency of 128.34 MHz, and were obtained using the saturation recovery method for only one central resonance line. The magnetizations for the 11B nuclei were measured at several temperatures. The recovery traces for the central resonance line of 11B with dominant quadrupole relaxation can be expressed as combinations of two exponential functions, as given in Eq. (2). T_1 was determined directly from the slope of the plot of log $\left(\frac{M(t)}{M(0)}\right)$ versus temperature.

4.2. Spin-lattice relaxation time of 11B in LiB$_3$O$_5$ using MAS NMR

The structural analysis of the 11B in LiB$_3$O$_5$ was carried out by the MAS NMR method. The 11B MAS NMR spectrum of LiB$_3$O$_5$ at room temperature is shown in Fig. 3(a). The central lines for the three kinds of 11B in the static NMR cannot be distinguished. However, the 11B MAS NMR spectrum consists of two peaks at chemical shifts δ of -18.60 and -7.21 ppm. This indicates the presence of chemically different 11B nuclei. The signal at the chemical shift of -18.60 ppm is assigned to the 4-coordinated tetragonal BO$_4$ [B(3)] and the signal at the chemical shift of -7.21 ppm is assigned to the 3-coordinated trigonal BO$_3$ [B(1) and B(2)]. The chemical shifts were assigned to B(1), B(2), and B(3) using the 11B MAS spectrum reported by Hansen et al. [23,24]. The weaker and stronger signals represent the 11B NMR lines for the 3-coordinated B(1) and B(2) and the 4-coordinated B(3) borons, respectively, as shown in Fig. 3(a).

The 11B spin-lattice relaxation times in the rotating frame T_{1p} were also measured at several temperatures. The spin-lattice relaxation times in the laboratory frame T_1 for B(1), B(2), and B(3) cannot be distinguished, whereas those for B(1), B(2), and B(3) in the rotating frame T_{1p} can be distinguished. The nuclear magnetization recovery traces obtained for B(1), B(2), and B(3) were described by a single exponential function of Eq. (4): the recovery traces exhibited a single exponential decay at all temperatures. The slopes of the recovery traces are nearly same at each temperature. The temperature dependences of the 11B T_{1p} is shown in Fig. 3(b). The T_{1p} of the 3-coordinated [B(1) and B(2)], and 4-coordinated B(3) shows similar trends, and the T_{1p} value of B(3) is longer than that of B(1) and B(2). The T_{1p} value, which differs from T_1, is nearly constant with temperature. The E_a obtained from the slope of the T_1 versus inverse temperature curve is 6.73 kJ mol$^{-1}$.

4.3. Spin-lattice relaxation time of 7Li in LiB$_3$O$_5$ using single-crystal NMR and MAS NMR

7Li is a quadrupole nucleus with a nuclear spin of 3/2. Just as for 11B, there is one central transition line and two satellite resonance
An NMR spectrum of ^7Li at room temperature is shown in Fig. 4 (a). The zero point of the x-axis shows the resonance frequency, 155.51 MHz, of the ^7Li nucleus. Instead of the two satellite resonance lines of the ^7Li nucleus, four satellite resonance lines are obtained in the case of the LiB$_3$O$_5$ crystal. Here, the Li spectrum of the two groups is due to the magnetically different sites. The rotation patterns of the ^7Li NMR spectra measured in the crystallographic ab-, bc-, and ca-planes at room temperature were reported previously [14]. From these results, the nuclear quadrupole coupling constant and the asymmetry parameter for the ^7Li nucleus in a LiB$_3$O$_5$ crystal were obtained; the quadrupole coupling constant, e^2qQ/h was 143 ± 1 kHz, and the asymmetry parameter η was 0.6 ± 0.1 at room temperature [14]. The EFG tensors of Li are not axially symmetric, consistent with the crystal structure. The spectra for the two groups of Li(1) and Li(2) have different orientations, and originate from magnetically different sites.

The structural analysis of the ^7Li in LiB$_3$O$_5$ was carried out by the MAS NMR method. The ^7Li MAS NMR spectrum of LiB$_3$O$_5$ at room temperature is shown in Fig. 4 (b). The ^7Li MAS NMR spectrum consists of one peak at a chemical shift of -0.85 ppm. The spinning sidebands are marked with asterisks. The signals for Li(1) and Li(2) obtained by MAS NMR do not split because the Li nuclei are chemically equivalent, even though they are magnetically different.

The spin-lattice relaxation time in the laboratory frame, T_1, was measured by applying $(\pi/2)_\text{sat}$ − $\pi/2$ pulse sequences. The recovery traces of the magnetization of the crystals were measured at several different temperatures. The value of T_1 was measured at the central resonance line. T_1 for Li(1) and Li(2) cannot be distinguished because of the overlap of the central resonance line of Li(1) and Li(2). The recovery traces of Li have a single exponential function. Thus, the spin-lattice relaxation time is determined from

![Fig. 3. (a) ^{11}B MAS NMR spectrum [B(1) and B(2) in 3-coordinate BO$_3$, and B(3) in 4-coordinate BO$_4$] in LiB$_3$O$_5$ at room temperature. The spinning sidebands are marked with asterisks, and (b) Temperature dependences of the spin-lattice relaxation time in the rotating frame $T_{1\rho}$ for 3-coordinate B(1) and B(2), and 4-coordinate B(3) in LiB$_3$O$_5$.](image)

![Fig. 4. (a) ^7Li single-crystal NMR spectrum in the LiB$_3$O$_5$ crystals. The static magnetic field B_0 is parallel to the b + 25°-axis in ac-plane. (b) ^7Li MAS NMR spectrum in LiB$_3$O$_5$ at room temperature. The spinning sidebands are marked with asterisks.](image)

![Fig. 5. Temperature dependences of the spin-lattice relaxation time in the laboratory frame T_1, and in the rotating frame $T_{1\rho}$ for ^7Li in LiB$_3$O$_5$.](image)
a fit of the recovery pattern given by Eq. (2). Here, W_1 and W_2 have the same values in the recovery traces and thus, the recovery traces of Li have a single exponential function: when $W_1 = W_2$, $T_1 = 5/\left[2(W_1 + 4W_2)\right] = 1/(2W_1)$. The relaxation time was determined directly from the slope of the log $[M(\infty)/M(t)/M(\infty)]$ versus time (t) plot. The results of the temperature dependence of T_1 of 7Li in this single crystal are shown in Fig. 5. At room temperature, T_1 has a large value of 559 s. The relaxation time decreases with increasing temperature and appears to be proportional to temperature in the temperature range from 180 to 400 K. The E_a obtained from the slope of the T_1 versus inverse temperature curve is 1.21 kJ mol$^{-1}$.

The 7Li spin-lattice relaxation times in the rotating frame T_{1p} were measured at several temperatures. Although the quadrupole parameters for the two types of 7Li are distinguished from data for the rotation patterns of the 7Li NMR spectra in mutually perpendicular planes, the spin-lattice relaxation times in the rotating frame, T_{1p}, cannot be distinguished for Li(1) and Li(2) because of the chemical equivalence. The nuclear magnetization recovery traces obtained for 7Li were described by the single exponential function of Eq. (4). The result of the temperature dependence of T_1 for 7Li is shown in Fig. 5. At room temperature, T_{1p} has a short value of 1.43 s. The relaxation time T_{1p} is nearly constant with increasing temperature, and E_a has a very small value, 0.09 kJ mol$^{-1}$.

Table 1

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Bond-length (Å)</th>
<th>e^2qQ/h (kHz)</th>
<th>η</th>
<th>T_1 (sec)</th>
<th>E_a (T_1) (kJ/mol)</th>
<th>T_{1p} (sec)</th>
<th>E_a (T_{1p}) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-coordinated B(1)</td>
<td>1.3692</td>
<td>2615</td>
<td>0.266</td>
<td>11811</td>
<td>6.731</td>
<td>0.50 \times 10$^{-3}$</td>
<td>0.17</td>
</tr>
<tr>
<td>3-coordinated B(2)</td>
<td>1.3713</td>
<td>2690</td>
<td>0.204</td>
<td>11811</td>
<td>6.731</td>
<td>0.50 \times 10$^{-3}$</td>
<td>0.17</td>
</tr>
<tr>
<td>4-coordinated B(3)</td>
<td>1.473</td>
<td>176</td>
<td>0.584</td>
<td>11811</td>
<td>6.731</td>
<td>12.52 \times 10$^{-3}$</td>
<td>1.79</td>
</tr>
<tr>
<td>Li</td>
<td>1.9887–2.1722</td>
<td>143</td>
<td>0.6</td>
<td>559</td>
<td>1.21</td>
<td>1.43</td>
<td>0.09</td>
</tr>
</tbody>
</table>

*a T_1 for B(1), B(2), and B(3) from NMR experiment cannot be distinguished.

5. Conclusion

We propose NMR studies as a microscopic tool for evaluating and identifying LiB$_3$O$_5$ among NLO borate materials. 11B NMR spectroscopy is a well-established analytical tool in several areas of the diverse structural chemistry of boron. Although the quadrupole parameters of three borons [B(1), B(2), and B(3)] were reported using single-crystal NMR, T_1 of the three kinds of bonds cannot be distinguished. In addition, Li(1) and Li(2) corresponding to two resonance lines in the Li nucleus cannot be distinguished by static NMR. Therefore, the structural nature of lithium and the three borons in LiB$_3$O$_5$ were investigated by MAS NMR. The B(1), B(2), and B(3) sites obtained from the 11B MAS NMR are distinguished by the spectrum and T_{1p}. The T_1 and T_{1p} values for lithium and boron in LiB$_3$O$_5$ are compared, as shown in Table 1. The T_{1p} value for 3-coordinated B(1) and B(2) is shorter than that of 4-coordinated B(3). This result is consistent with the boron–oxygen distances. The T_1 of 11B slowly decreases with increasing temperature, whereas the T_{1p} of 11B, which differs from T_1, is nearly constant. However, Li(1) and Li(2) corresponding to two resonance lines in the Li nucleus cannot be distinguished by MAS NMR. The reason is that although Li(1) and Li(2) are magnetically inequivalent, they are chemically equivalent. In addition, T_1 and T_{1p} of Li are nearly constant with increasing temperature. Finally, E_a was obtained for 7Li and 11B. The E_a for the molecular motions obtained from T_1 of 11B are larger than that for the molecular motions obtained from T_{1p} of 11B. In fact, T_{1p} is affected by slower molecular motions as compared with T_1, and so the T_{1p} measurements provide additional information that can be used for a more reliable check on various models of motion.

Consequently, the boron sites for the trigonal 3-coordinated BO$_3$ and the tetrahedral 4-coordinated BO$_4$ were distinguished by the 11B MAS NMR spectrum and T_{1p}. No significant changes were seen in the T_{1p} at the 7Li and 11B nuclei in LiB$_3$O$_5$. Therefore, the local symmetry around the 7Li and 11B atoms is insensitive with respect to changes in temperature. We made an attempt to find the relationship between the NMR parameters and NLO structural features. This research may help explain the structure–property relationships in most known NLO crystals of various structural types and to establish guidelines for identifying and developing new NLO materials.

Acknowledgment

This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (20120101763).

References