Original research article

Electronic and optical properties of paratellurite TeO$_2$ under pressure: A first-principles calculation

Mosayeb Naseria, Jaafar Jalilianb,*, A.H. Reshakc,d

a Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
b Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, P.O. Box 6718997551, Kermanshah, Iran
c New Technologies – Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
d School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis, Malaysia

A R T I C L E I N F O

Article history:
Received 29 December 2016
Accepted 24 March 2017

Keywords:
Density functional theory
α-TeO$_2$ crystal
Electronic properties
Optical properties

A B S T R A C T

In this communication, the electronic and optical properties of paratellurite TeO$_2$ (α-TeO$_2$) single crystal under pressure up to 9 GPa are investigated by means of the first principles calculations in the framework of the density functional theory. The calculation show that by imposing external hydrostatic pressure, α-TeO$_2$ remains an indirect band gap semiconductor. However, by increasing the pressure from 0 to 9 GPa, the energy band gap of the α-TeO$_2$ crystal is increased. The calculated optical properties indicate a little blue shift in the optical properties spectra of the material.

© 2017 Elsevier GmbH. All rights reserved.

1. Introduction

To predict pressure-dependent physical properties of materials from first principles studies alone has marked a fundamental step forward in investigating realistic materials properties. Due to the potential optical application of TeO$_2$ based glass such as optical switching devices, optical amplifiers, it has attracted considerable studies from theoretical and experimental point of view [1].

There are three crystalline phases of TeO$_2$. These are paratellurite α-TeO$_2$ (D_4^h, $P4_12_12$) [2,3], the tellurite β-TeO$_2$(D_{2h}^{15}, Pbca) [4–6], and γ-TeO$_2$. The first two phases have been known for long time, while the third crystalline polymorph which is metastable at normal conditions has been recently identified [7]. The TeO$_2$ phases are described as different arrangements of corner-sharing TeO$_4$ units including two longer Te–O bonds and two shorter ones [8]. The α-TeO$_2$ is thermodynamically stable, but naturally the TeO$_2$ is mostly found in β phase [9].

It has been reported that TeO$_2$ possesses the dielectric constant of about 17–28 in both TeO$_2$ crystal and films which proposes potential application of the compound in ultrahigh integration electronic devices, makes this compound more attracting material [4,10–13]. Very recently the phase transition and equation of state of α-TeO$_2$ under high pressure have been studied by Liu et al. [14]. It has been shown that for paratellurite, in the condition of external pressure below 22 GPa, in which a first-order phase transition observed, the density increases continuously with pressure, whereas the lattice parameters a and c decrease with pressure, while b decreases slightly and begins to increase at about 10 GPa. The phenomena are considered as a precursor of the coming phase transition.

* Corresponding author.
E-mail address: jaafarjalilian@gmail.com (J. Jalilian).

http://dx.doi.org/10.1016/j.ijleo.2017.03.108
0030–4026/© 2017 Elsevier GmbH. All rights reserved.
In this study, the electronic and optical properties of the paratellurite TeO$_2$ under pressure up to 9 GPa have been studied using density functional theory.

2. Computational details

In this calculation, the density functional theory as implemented by the WIEN2k code [15] is used. To expand the Kohn–Sham wave functions, the all-electron full-potential linear augmented plane waves plus local orbital (FPLAPW + lo) is applied. The exchange-correlation term is produced by utilizing the generalized gradient approximation presented by Perdew–Burke–Ernzerhof (GGA–PBE) [16]. Based on Monkhorst–Pack approximation [17], a mesh of $11 \times 11 \times 7$ and $25 \times 25 \times 15$ have been considered in the whole first Brillouin zone for electronic and optical calculations, respectively. The computational input parameters are $R_{MT}K_{max} = 8$, $C_{max}=14$ Ry$^{1/2}$ and $l_{max} = 10$. To gain the complex dielectric function components, the random phase approximation (RPA) method [18] and the Kramers–Kronig relations are employed.

3. Structural properties

Prior to the calculation, the lattice constants of the α-TeO$_2$ (see Fig. 1a and b) is optimized using the thermodynamical equation state of Brich–Murnaghan [19]:

$$E(V) = E_0 + \frac{9B_0V_0}{16} \left\{ \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right]^3 B_0' \right\} + \frac{9B_0V_0}{16} \left\{ \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right]^2 \right\} \left[6 - 4 \left(\frac{V_0}{V} \right)^{2/3} \right]$$

(1)

where V_0 is the initial considered volume, V is the deformed volume, B_0 is the bulk modulus, and B_0' is the derivative of the bulk modulus with respect to pressure. The energy vs volume curve for a unit cell of α-TeO$_2$ is plotted in Fig. 1c. The minimum of this plot provides the equilibrium volume of the crystal cell. Considering the obtained equilibrium volume, the optimized lattice constants are calculated as $a = b = 4.85$ Å and $c = 7.68$ Å which are in good agreement with the previous obtained values. The calculated optimized lattice parameters are compared with the previous obtained values in Table 1.
Table 1
Structural data for α-TeO₂. Both SIESTA and this work have used PBE-GGA approximation. The ESPRESSO and B3LYP have employed plane wave and hybrid functional calculation respectively.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>4.808</td>
<td>4.987</td>
<td>4.990</td>
<td>4.899</td>
<td>4.85</td>
</tr>
<tr>
<td>c (Å)</td>
<td>7.612</td>
<td>7.612</td>
<td>7.546</td>
<td>7.792</td>
<td>7.68</td>
</tr>
<tr>
<td>(Te–O)₁ (Å)</td>
<td>1.879</td>
<td>1.955</td>
<td>1.944</td>
<td>1.909</td>
<td>1.94</td>
</tr>
<tr>
<td>(Te–O)₂ (Å)</td>
<td>2.121</td>
<td>2.118</td>
<td>2.160</td>
<td>2.160</td>
<td>2.15</td>
</tr>
</tbody>
</table>

Fig. 2. A two-dimensional charge distribution in (110) plane, the red and blue balls illustrate oxygen and tellurium atoms respectively. (For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)

The considered unit cell contains eight oxygen atoms and four tellurium atoms. Each tellurium atom is shared by four oxygen atoms while each oxygen atom is bounded by two tellurium atoms. After the energy optimization process, it has been found that the TeO₂ exhibits two different Te–O bond lengths, these are 1.94 and 2.15 Å.

The structural stability of the cell, is confirmed by cohesive energy calculation. According to the definition of cohesive energy:

$$E_{coh} = \frac{E_{\alpha-TeO_2}^{total} - mE_{Te}^{isolated} - nE_{O}^{isolated}}{m + n}$$

(2)

where $$E_{\alpha-TeO_2}^{total}$$, $$E_{Te}^{isolated}$$ and $$E_{O}^{isolated}$$ are total energy of α-TeO₂ unit cell, the energy of isolated tellurium and isolated oxygen atoms, respectively. Also, m and n indexes refer to the number of tellurium and oxygen atoms in the cell, respectively. We obtained the value of 3.21 eV/atom for cohesive energy of this compound which denotes to its a good structural stability.

4. Electronic properties

The electronic properties of the α-TeO₂ crystal under hydrostatic pressure up to 9 GPa were investigated. To understand the bond nature of Te–O in α-TeO₂ crystal, the two-dimensional charge distribution in (110) plane is plotted in Fig. 2. As can be seen from this figure, the charge accumulation around oxygen atom is more remarkable than tellurium atom, which is in agreement with the higher electron negativity of the oxygen atoms. Furthermore, by consideration on the electronic charge distribution plot, one can claim the covalence nature for the Te–O bonds.

To gain deep insight into the electronic properties of α-TeO₂, the total, partial density of states (DOS) and the band structure of the α-TeO₂ under different pressures are plotted in Figs. 3–5 respectively.

Considering the DOS plots (Fig. 3), one can see that for the considered structure the oxygen atoms play more considerable role in valence bands of the α-TeO₂ than the tellurium atoms, which is attributed to the higher electron negativity of oxygen than the tellurium, i.e., the bonding wave functions are concentrated around oxygen atoms. By comparing the total and partial density of states (DOS) plots at different pressures, one can see that imposing hydrostatic pressure up to 9 GPa to the considered crystal does not make considerable change in the valance bands structure. However, it is clear that by increasing hydrostatic pressure, the conduction bands edge is shifted to higher energies, i.e., a small blue shift is occurred in valance bands structure. On the other word, imposing hydrostatic pressure to the α-TeO₂, makes the Te–O bonds more stronger than that of pressure free α-TeO₂ crystal.

According to the band structure plots (Fig. 5), the considered compound exhibits an indirect energy gap of 2.85 eV, in which the valence bands maximum is occurred in somewhere between Γ and X directions, while the conduction bands minimum is located between Γ and M directions. The calculation shows that the energy gap of the α-TeO₂ is slightly increased under pressure, i.e., the material indicates band gaps of about 2.94 eV, 3.01 eV, and 3.07 eV under 3, 6, and 9 GPa pressure respectively.
Fig. 3. The total and partial density of states (DOS) at different pressures. The blue, red, and green lines refer to total DOS, the total DOS of tellurium, and the total DOS of oxygen atoms. (For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)

Fig. 4. The partial density of states (DOS) at different pressures. The blue, red, and green lines refer to p_x, p_y, and p_z contribution in DOS. (For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)

Fig. 5. The band structure of an α-TeO$_2$ crystal under different pressures.

5. Optical properties

By studying optical properties of materials, it can be possible to propose new potential optoelectronic applications. The calculation of complex dielectric function can be considered as one of the best approaches to investigate the optical properties of materials. The complex dielectric function is a tool to identify all optical aspects such as reflectivity percentage as well as absorption spectrum. The complex dielectric function is made up of two contributions; real part and imaginary part, which are related to the following equation:

$$
\varepsilon_{\text{complex}} = \Re \varepsilon + \Im \varepsilon,
$$

(3)
The real part of the complex dielectric function of an \(\alpha\)-TeO\(_2\) crystal under hydrostatic pressure up to 9 GPa. (For interpretation of the references to color in the text, the reader is referred to the web version of the article.)

![Diagram of the real part of the complex dielectric function](image1)

The imaginary part of the complex dielectric function of an \(\alpha\)-TeO\(_2\) crystal under hydrostatic pressure up to 9 GPa.

![Diagram of the imaginary part of the complex dielectric function](image2)

The imaginary component of the dielectric function is identified through Eq. (3), which takes interband optical transitions between occupied \((ik)\) and unoccupied electron states \((jk)\) [20] into account,

\[
\varepsilon^{\text{re}}(\omega) = \frac{4\pi e^2}{m^2\omega^2} \sum_{i,f} \int \frac{2d^3k}{(2\pi)^3} |(ik)P_{\alpha}(jk)|^2 f_i^k (1 - f_j^k) \delta(E_j^k - E_i^k - \hbar\omega),
\]

the real part of the dielectric function is obtained correspondingly:

\[
\varepsilon^{\text{re}}(\omega) = \delta_{\alpha\beta} + \frac{2}{\pi} \text{Pr.} \int_0^\infty \frac{\varepsilon^{\text{re}}(\omega')}{\omega^2 - \omega'^2} \omega' \, d\omega',
\]

where Pr. denotes to the Cauchy principal value.

The real and the imaginary parts of the complex dielectric function of the \(\alpha\)-TeO\(_2\) crystal under hydrostatic pressure up to 9 GPa are plotted in Figs. 6 and 7 respectively. As seen in Fig. 6, by increasing the imposed hydrostatic pressure, the real part of the complex dielectric function is slightly shifted to higher energies (blue shift). Also the static dielectric constant decreases by increasing the pressure. Needless to say that the almost unchanging value of the \(\varepsilon\) is originated by the semiconductor nature of the considered material.

For more details investigation on the optical properties of the \(\alpha\)-TeO\(_2\), two important optical spectra are discussed: the optical absorption and the reflectivity spectrum. The optical absorption and the reflectivity spectrum of the \(\alpha\)-TeO\(_2\) crystal under different hydrostatic pressures are plotted in Figs. 8 and 9, respectively.

Considering Fig. 8, one can see that \(\alpha\)-TeO\(_2\) crystal indicates almost same optical gap in both polarization directions, which is due to the excitation behaviors of the valence electrons in these two directions. Following Fig. 9, it can be seen from the reflectivity spectra of \(\alpha\)-TeO\(_2\) under 0, 3, 6 and 9 GPa there exists a considerable anisotropy between the two components along the x and z polarization directions, as the z-component show higher reflectivity than that of x-component.

Finally, the energy loss spectrum of the \(\alpha\)-TeO\(_2\) is plotted in Fig. 10. The peak of the energy loss spectrum indicates the plasma frequency of the compound. According to Fig. 10, the plasma frequency of the \(\alpha\)-TeO\(_2\) is observed somewhere between 24 and 25 eV.

The optical properties are calculated in the energy range 0–30 eV, but we show the spectral structure of the optical properties in the energy range where it exhibits the intensive spectral features.
6. Conclusions

Using the optimized structure of α-TeO$_2$, we have calculated the structural properties of α-TeO$_2$ under pressure between 09 GPa. The calculated lattice parameters show good agreement with the previous results. It has been found that the α-TeO$_2$ exhibits two different bond lengths. The calculated electronic charge density distribution confirms the covalence nature for the Te–O bonds. The structural stability of the cell, is confirmed by cohesive energy calculation. The calculated electronic band structure, density of states and the optical properties confirm that the energy band gap increases with rising the pressure. The calculated optical properties give deep insight into the electronic structure.

Acknowledgements

This work is supported by Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. A.H. Reshak would like to acknowledge the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, co-funded by the ERDF as part of the Ministry of Education,
Youth and Sports OP RDI program and, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports under the National Sustainability Program I. Computational resources were provided by MetaCentrum (LM20100005) and CERIT-SC (CZ.1.05/3.2.00/08.0144) infrastructures. M. Naseri would like to thank Soheila Cholipour, Yasna Naseri and Viana Naseri for their interests in this work.

References