

Er,Cr:YSGG

DESCRIPTION

In the Cr,Er: YSGG crystal ,Cr3+ replaces the Ga3+ or Sc3+, and Y3+ is replaced by Er3+, the crystal has the advantages of large size, low optical damage, high optical quality and low lasing threshold. Flashlamp or laser diode is often used to pump the laser crystal, 970 nm laser diode is regarded as the first choice to realize 2790 nm laser pumping of Er, Cr: YSGG, which can excite the Er3+ to his lasing upper level directly with high efficiency and low energy cost. Nowadays, various of method have been adopted to switch Q (such as acousto-optic, electro-optic, FTIR) to realize pulse laser output. Owing to the specificity of lasing wavelength, this kind of lasers are widely used in medical applications, scientific investigations, material processing, military and so on.

SPECTRA

www.laser-crylink.com

+86-21-66566068 Building 7, No.718 Baoqi Road, Baoshan District, Shanghai, China

PARAMETER

Material and Specifications

Crystal Structure	Cubic
Chemical Formula	Y2.93Sc1.43 Ga3.64O12
Lattice Constant	12.42
Concentration	30 at % (3.7 x 1021 cm-3 , dodecahedral Er3+)
	2 at % (1.7 x 1020 cm-3 , octahedral Cr3+)
Wavefront Distortion (per inch of rod length)	1-2
Surface Quality	10 – 5 scratch-dig
Perpendicularity	5 '
Parallelism	30″
Barrel Finish	55 micro-inch ±5 micro-inch
Chamfer Angle	45 deg ±5 deg
Chamfer	0.005 ±0.003 in
Length Tolerance	+0.040 / -0.000 in
Diameter Tolerance	+0.0000 / -0.0020 in

Physical and Chemical Properties

Thermal conductivity (W/mK)	8
Thermal expansion coefficient	8.1×10-6/K
Thermo-optical factor (dn/dT)	12.3 (10-6/K)
Hardness (Mohs)	8
Density	5.67g/cm3 (Cr&Er doped)
Sizes, (dia x length), mm	from 3 x 30 to 12.7 x 127.0
Orientation	<001>, <111>

Optical and Spectral Properties

Refractive index	1.92 at 1000nm
Fluorescent Lifetime	1400 µs
Emission cross-section, cm2	5.2 x 10-21
Lasing wavelength, µm	2.791

FEATURES

- Good crystal quality
- Super mechanical properties
- Low pump threshold
- High slope efficiency
- Working at medium frequency

APPLICATIONS

• 2790nm Laser