

Cr:GSGG

DESCRIPTION

Cr:GSGG crystal (Cr doped Gadolinium scandium gallium garnet) is a laser material with high efficiency. An electro-optic shutter element was first utilized to provide Q-switched operation of the ruby laser. Passive Q-switched ruby lasers were achieved with saturable dye absorbers and colored glass (compounds of selenium and cadmium sulfide. Recently the operational characteristics of a dye Q-switch for a pulsed ruby laser was still studied for application in underwater holography. However, the dye Q-switch was limited in durability because of degradation (decomposition) of the dyes and the glass Q-switch was readily damaged. Thus, the tetravalent chromium doped gadolinium scandium gallium garnet Gd₃Sc₂Ga₃O₁₂ (Cr⁴⁺:GSGG) passive Q-switch ruby laser-offers for the first time high reliability, durability and high efficiency.

Cr:GSGG crystal – a crystal which shows high efficiency and high reliability.

Cr⁴⁺: GSGG has been utilized for the first time to provide a saturable absorber Q-switch for the ruby laser. Single output pulse operation (100 mJ and 27 ns duration) with efficiencies relative to the free-running ruby laser operation of 25-30% was routinely obtained.

The crystalline material Cr³⁺:GSGG is currently of interest as a broad-band, room temperature laser material. The small separation between the ⁴T2 and ²E electronic levels of Cr^{3+} in the system can result in interesting spectroscopic behaviour. People have investigated the temperature dependence of the CW and transient luminescence, and have found it to be consistent with a model for the dominant Cr^{3+} site in which the lowest energy ²E and ⁴T2 levels are approximately coincident in energy at low temperature.

APPLICATIONS

• *Cr*⁴⁺: *GSGG* used in saturable absorber Q-switch for the ruby laser.

The tetravalent chromium doped gadolinium scandium gallium garnet $Gd_3Sc_2Ga_3O_{12}$ (Cr⁴⁺:GSGG) passive Q-switch ruby laser-offers for the first time high reliability, durability and high efficiency. Single output pulse operation (100 mJ and 27 ns duration) with efficiencies relative to the free-running ruby laser operation of 25-30% was routinely obtained.

FEATURES

- High reliability
- High efficiency
- High durability
- Strong and saturable absorption
- Good thermal conductivity

www.laser-crylink.com sales@crylink.com +86-21-66566068

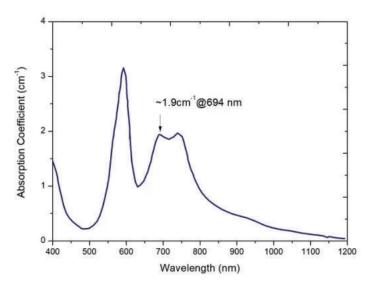
Building 7, No.718 Baoqi Road, Baoshan District, Shanghai, China

Cr:GSGG

PARAMETERS

SPECTRAL PROPERTIES

Emission wavelength (nm)	1061.2
Emission Cross Section (pm ²) ^a	13
$R_{2} > Y_3$ Transition Linewidth (cm ⁻¹)	11.5
Nd ³⁺ Fluorescence Lifetime (ps) at Low Concentrations (<10 ¹⁷ cm ⁻³)	273-283
Nd^{3+} concentration for which lifetime is reduced by 50% (10^{20} Nd ions cm ⁻³)	5


OPTICAL PROPERTIES

Refractive index at 1064 nm	1.9424	
Index change with temperature dn / dt, (10 ⁻⁶ k ⁻¹)	10.9	
Index change with temperature		
P11	-0.012 ± 0.003	
P12	0.019 ± 0.003	
P44	-0.0665 ± 0.0013	

OPTICAL PROPERTIES

Density (g*cm ⁻³)	6.495
Calorific Capacity $(J^*g^{-1}*K^{-1})$	0.4029
Thermal Conductivity (W*m ⁻¹ *K ⁻¹)	6
Thermal Expansivity (10^{-6} K^{-1})	7.5
Poisson Ratio	0.28
Young's Modulus (GPa)	210
Breaking Tenacity (MPa)	1.2
Thermal Stress Resistance (W*m ⁻¹) ^b	660

SPECTRA

Building 7, No.718 Baoqi Road, Baoshan District, Shanghai, China