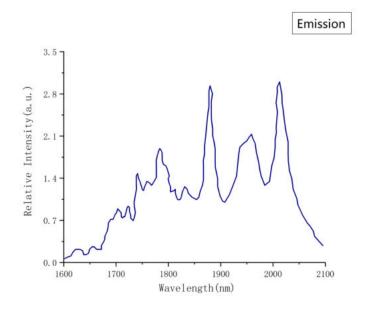

Tm:YAG



DESCRIPTION

Tm: YAG operating on the 3H4 –3H6 transition in the 0.82 µm wavelength range. It can be pumped with efficient diode lasers in the 0.78 – 0.8 µm wavelength range. The transition has a small quantum defect for low thermal dissipation. The upper state lifetimes can be long, on the order of a millisecond for good energy storage. It also has sufficient gain bandwidth to support sub-ps-long pulses depending on the host material and temperature of operation. Compared with the single crystal material, the transparent ceramic materials combine the advantages of single crystals and glasses. The transparent ceramic materials are fabricated by solid-state reaction and vacuum sintering. So, they not only possess good optical and thermal properties as fine as single crystals, but also can be fabricated with large size, high concentration. Furthermore, they also have other superiorities, such as short fabrication period, less cost, and multifunctional samples.

SPECTRA

PARAMETER

Material and Specifications

Tm Concentration Tolerance	Tm:0.5~5at%	
Orientation	[111], <50	
Parallelism	≤10"	
Perpendicularity	≤5′	
Surface Quality	10-5 (MIL-O-13830A)	
Wavefront Distortion	≤ 0.125λ/25 mm @632.8nm	
Surface Flatness	λ/8@632nm	
Clear Aperture	>95%	
Chamfer	0.15±0.05mm	
Size	D: 2~10mm, L: 3~150mm	
Coatings	AR: ≤0.25% @2µm	

Physical and Chemical Properties

Crystal Structure	Cubic	
Lattice Constants	12.01	
Density	4.56±0.04g/cm3	
Melting Point	1970℃	
Thermal Conductivity	14W/m/K@20℃; 10.5W/m/K@100℃	
Specific Heat	0.59(J/g. cm3@0-20℃)	
Thermal Optical Coefficient(dn/dT) 7.3×10-6/K	
Thermal Expansion	[100]: 8.2×10-6/K@0~250℃	
	[110]: 7.7×10-6/K@0~250℃	
	[111]: 7.8×10-6/K@0~250℃	
Hardness (Mohs)	8.5	
Young`s Modulus	3.17×104Kg/mm2	
Shear Modulus	310GPa	
Extinction Ratio	≥ 25dB @632.8nm	
Tensile Strength/Gpa	0.13~0.26	
Poisson Ratio	0.25	
Thermal Shock Resistance	790W/m	

FEATURES

- High quantum efficiency
- High efficiency with LD pump
- Long upper state lifetime
- Sufficient gain bandwidth
- Small quantum defect
- High damage threshold

APPLICATIONS

• 2000nm laser

Optical and Spectral Properties

Laser Transition	3F4→3H6
Laser Wavelength	1.87~2.16µm
Absorption Cross Section	7.5×10-21cm2
Diode Pump Band	785nm, 680nm
Emission Cross Section@2013nm	2.9×10-20 cm2
Fluorescence Lifetime	11ms
Refractive Index @632nm	1.83